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A B S T R A C T

There is a pressing need to identify individuals at high risk of conversion from mild cognitive impairment (MCI)
to Alzheimer's disease (AD) based on available repeated cognitive measures in primary care. Using data from the
Alzheimer's Disease Neuroimaging Initiative (ADNI), we applied a joint latent class mixed model (JLCM) to
derive a 3-class solution: low risk (72.65%), medium risk (20.41%) and high risk (6.94%). In the low-risk group,
individuals with lower daily activity and ApoEε4 carriers were at greater risk of conversion from MCI to AD. In
the medium-risk group, being female, single, and an ApoEε4 carrier increased risk of conversion to AD. In the
high-risk group, individuals with lower education level and single individuals were at greater risk of conversion
to AD. Individual dynamic prediction for conversion from MCI to AD after 10 years was derived. Accurate
identification of conversion from MCI to AD contributes to earlier close monitoring, appropriate management,
and targeted interventions. Thereby, it can reduce avoidable hospitalizations for the high-risk MCI population.
Moreover, it can avoid expensive follow-up tests that may provoke unnecessary anxiety for low-risk individuals
and their families.

1. Introduction

In recent decades, there has been a significant increase in human life
span and improvements in general healthcare, leading to a dramatic
increase in the proportion of older adults in the population (Ferri et al.,
2005). Dementia is a major age-related disease manifesting in pro-
gressive and insidious deterioration in cognition, function and behavior
until death (Hill et al., 2017; Xue et al., 2017). Alzheimer's disease
(AD), accounting for the largest proportion of senile dementia, has
devastating effects on patients and their families, and it is associated
with significant societal and financial burdens (Reitz and
Mayeux, 2014). The initial presenting symptom of AD is cognitive
complaints, frequently represented by a difficulty in remembering new
information (Pereira et al., 2018). In advanced stages, brain regions

responsible for cognitive abilities are irreversibly damaged and cerebral
compensatory reserves are gradually exhausted (Beheshti et al., 2017).
Patients lose self-care abilities, including dressing, eating, and personal
care (Scheltens et al., 2016). Despite significant funding and huge ef-
forts by the global scientific and medical community, there have been
numerous failures in the development of effective medicines for the
treatment and prevention of AD (Alzheimers and Dementia, 2018;
Bachurin et al., 2018).

Prior to the gradual development of overt dementia, many in-
dividuals experience mild cognitive impairment (MCI), which is gen-
erally deemed to be an intermediate transitional state between normal
aging and AD. Existing longitudinal studies report that older adults with
MCI have a 10%−15% annual risk of converting to probable AD
(Manly et al., 2008; Petersen et al., 2009). However, a significant
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number tends to remain stable over-time and some may even return to a
“healthy” state (Minhas et al., 2017; Spasov et al., 2018). Currently
available screening instruments can effectively detect individuals with
overt dementia. However, it is difficult to predict conversion from MCI
to AD. The development of effective and personalized strategies to
identify and slow the progression of AD would enable preservation of
greater autonomy and function for individuals, and reduce health in-
surance costs. Therefore, reliably predicting conversion of MCI to AD is
focus of current research (Pereira et al., 2018; Spasov et al., 2018).

Previous studies have identified a series of markers of conversion
from MCI to AD that can quantify disease progression. These included
neuropsychological assessment, neuroimaging and clinical markers.
Advanced imaging techniques such as magnetic resonance imaging
(MRI) and fluorodeoxyglucose positron emission tomography (PET)
hold promise for detecting development of neuropathological changes.
Nevertheless, highly expensive high-tech procedures are inaccessible to
large portions of the population and only collected in tertiary or highly
specialized medical centers (Davatzikos et al., 2009). Moreover, trau-
matic procedures (e.g., lumbar puncture) and cerebrospinal fluid bio-
markers are associated with invasive risks and resistance, high cost, and
time constraints (Jr et al., 1999; Mosconi et al., 2010). Therefore, some
of these technologies are not appropriate to enable large-scale benefit,
because their incorporation into routine preventive healthcare may be
complicated by practical considerations (Levy et al., 2016). In parti-
cular, the conversion from MCI to AD remains difficult to accurately
predict in primary care settings, due to the lack of access to sophisti-
cated technologies and expertise (Luk et al., 2017).

Given the dynamics and multidimensionality of the aging process,
factors influencing the risk of conversion from MCI to AD, including
demography, socioeconomics, health behaviors, and psychological
characteristics, vary widely among the elderly (Anderlucci and Viroli,
2015; ProustLima et al., 2015). Obtaining such details will not require
collection of extra information from patients. For example, sex, age,
marital status, educational level are routinely collected in primary care.
Neuropsychological test batteries can be as sensitive as physical bio-
markers in the detection of and screening for cognitive impairment and
dementia (Chapman et al., 2011; Dickerson et al., 2007; Fleisher et al.,
2007). Brief information from neuropsychological tests could identify
and track subtle cognitive changes that occur in the prodromal phase of
disease. Such information could assist medical service providers with
limited resources to effectively screen many routinely identify func-
tional impairments (Bondi et al., 2017). It is worth noting that several
neuropsychological tests at different time points more accurately reflect
actual cognitive abilities (Xue et al., 2017).

Accurate identification of individuals within the MCI population at
high risk of future AD could contribute to earlier close monitoring,
appropriate management, and targeted interventions for appropriate
patients; thus reducing avoidable hospitalizations (Barnes et al., 2014;
Lin et al., 2013). In contrast, low-risk individuals do not need expensive
follow-up tests, which may provoke unnecessary anxiety for the patient
and their families (Barnes et al., 2014). At present, risk models use
different known risk factors to identify high-risk individuals in the MCI
population (Stephan et al., 2010). However, no reported models are
universally accepted with high predictive accuracy (Hou et al., 2018).
Furthermore, there is little agreement that primary healthcare physi-
cians can obtain better results for cognitive screening (Panayiotis et al.,
2010). A predictive strategy for primary care should therefore be con-
structed using existing or readily available information (Hou et al.,
2018).

In this study, we selected longitudinal behavioral markers (i.e.,
cognitive and daily activity ability), demographic risk factors (i.e., age,
marital status, and educational level) and individual genetic risk factors
(i.e., sex and APOE status) to construct a risk forecasting model. With
this model, we classified the MCI population into different risk cate-
gories, and implemented individual dynamic prediction in primary
care.

2. Methods

2.1. Participants

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.usc.edu) from 2005–2014. The primary goal
of ADNI has been to test whether serial MRI, PET, biological markers,
and clinical and neuropsychological assessments can be combined to
measure progression of MCI and early AD (Weiner et al., 2012). For the
ADNI study, written informed consent was obtained for all participants
and the study protocol was approved by the institutional review board
at each participating center, before protocol-specific procedures were
performed. General guidelines for the diagnosis of MCI incorporate the
presence of objective cognitive deficits with Mini Mental State Ex-
amination (MMSE) scores (between 24 and 30, inclusive)
(Gerstenecker and Mast, 2014), global Clinical Dementia Rating (CDR)
scores (0.5), and the preservation of activities of daily living (ADLs)
(Petersen et al., 2009). As such, the condition does not qualify as a
diagnosis of dementia. For the ADNI database, diagnosis of AD was
based on the National Institute of Neurologic and Communicative
Disorders and Stroke-Alzheimer's Disease and Related Disorders Asso-
ciation (NINCDS/ADRDA) criteria. For more up-to-date information see
www.adni-info.org.

Participants were included in the current study if they were over 65
with a diagnosis of MCI at baseline, including those who developed AD
during the follow-up period of ADNI 1, ADNI 2, or ADNI GO.
Participants with MCI were carefully selected to include those with
documented memory disorders, and to exclude those with damage that
may have other potential causes. Neuropsychology data with an
average follow-up of 6 months was extracted for 245 eligible partici-
pants. Participants with MCI converting to AD were included, not other
forms of dementia. Neuropsychology data after participants developed
AD were not included in the analysis. Participants had been adminis-
tered a multi-test cognitive battery every 6 months, with a brief cog-
nitive screening instrument (the MMSE) and a functional scale, the
Functional Activities Questionnaire (FAQ). Furthermore, demographic
data and APOEɛ4 status (present or not) were obtained from the
baseline visit.

2.2. Statistical analysis

Except for age at study entry and MMSE scores, which were con-
tinuous scores, other covariates in the model were re-coded as binary
variables to enable estimation of class-specific parameters. These in-
cluded sex (male/female), educational level (medium, 12 years/high,
more than 12 years), ApoEε4 status (present/absent), FAQ score (≤9/
>9), survival outcome (MCI/AD), and marital status (single: un-
married, divorced, separated, or widowed/married). Basic model spe-
cifications are detailed below. Continuous variables are shown as mean
(standard deviation (SD)).

Given the heterogeneity of the elderly population, we used a joint
latent class mixed model (JLCM) to simultaneously model longitudinal
biomarkers and events (Lin et al., 2002). The JLCM linking longitudinal
quantitative outcomes with time-to-event data by several statistically
defined homogeneous subgroups were found to flexibly capture corre-
lations, offering a better framework to handle additional heterogeneity
and identifying distinct sub-populations (Rouanet et al., 2016). When
the classification increased, baseline risk of the event could be changed
flexibly with the marker trajectory.

The JLCM was developed with three ingredients: class membership,
longitudinal marker trajectories, and hazard for the time-to-event
process (Proust-Lima et al., 2014). Supposing that the population is
heterogeneous, N participants from a random sample (N=245 in our
ADNI sample) could be divided into G finite unobserved subgroups (i.e.,
latent classes), which were characterized by distinct cognitive evolution
profiles and risk functions for the event of interest. Latent classes
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linking cognitive factors and the onset of AD could be derived with a
multinomial logistic regression model. The longitudinal sub-model
captured complex trajectories of cognition over time according to sex,
education level, marital status, ApoEε4, and FAQ score within a linear
mixed effect model. The survival sub-model, developed with a pro-
portional hazard model, may fit the survival process using the same
covariates as those used for the longitudinal sub-model.

Parameter estimations for the JLCM were performed in the max-
imum likelihood framework for a given number of latent classes, G
(Titterington et al., 1985). The optimal number of latent classes was
identified with the minimum principle of the Bayesian Information
Criterion (BIC) (Schwarz, 1978). A previously developed test score
could be used to check the conditional independence assumption
(Jacqmin-Gadda et al., 2010). Individual posterior probabilities per-
taining to each latent class could be gained given all the information.
The discrimination of the model depended largely on the results of
posterior classification and the identifiability of latent classes. The
proportion of participants with their maximal posterior latent class
membership probability was in general above 0.8 or 0.9
(Molenberghs and Kenward, 2008). The posterior classification table
provided the mean posterior probabilities for participants classified into
each class. For the latter, an ideal discriminatory classification would
have diagonal terms close to 1 and non-diagonal terms close to 0.

In the framework for the JLCM, subject-specific prediction could be
implemented. Either individual prediction values over all classes or
class-specific prediction value over all individuals could be obtained.
Individual dynamic cumulative incidences of latent classes were de-
rived given covariates, repeated cognitive measures, and conversion
from MCI to AD within a window of time [s, s+ t] up to the time of
prediction, s. Descriptive statistical analysis was performed with SPSS
22.0 and the JLCM was implemented in the Jointlcmm function of R
(http://cran.r-project.org/web/packages/lcmm). P values of less than
0.05 were considered significant.

3. Results

Table 1 presents background characteristics of the 245 participants.
At the end of follow-up, a minority of individuals (N=71, 29.0%) were
reported to have undergone conversion to AD, with the majority re-
maining in the MCI state.

Table 2 displays four candidate models. The BIC value changed little
between models 2 and 3. To facilitate interpretation of the model and

multiple categories for the population, the 3-class solution was pre-
ferred to ensure that dependency between times-to-AD and longitudinal
cognitive trajectory was captured, and the conditional independence
assumption was not rejected (P=0.37). The three estimated class
membership probabilities were π1= 72.65%, π2= 20.41%, and
π3= 6.94%.

3.1. The 3-class solution

An average of 72.65% individuals were allocated to class 1, which
represented the lowest risk rates (close to zero) for dementia before the
age of 78, as well as the smallest mean decline in MMSE score with age.
It is worth noting that the risk of conversion from MCI to AD after 78
years increased. Class 1 was designated the “low-risk group”.

Class 2, the “medium-risk group”, was associated with an increased
risk of MCI conversion to AD after 65 years old. Individuals allocated to
this group began with cognitive levels similar to those in class 1, which
remained stable until around 66 years of age where a gradual pro-
gressive cognitive decline began.

Class 3 comprised the minority of the population (6.94%) and was
designated the “high-risk group” because it was associated with the
highest risk of conversion from MCI to AD, with a sharper downward
trend in MMSE scores than in classes 1 and 2. Overall, cognitive levels
in class 3 were poor throughout the trial period. Estimated mean MMSE
score evolution and survival functions associated with conversion from
MCI to AD in the three classes are illustrated in Figs. 1 and 2, respec-
tively.

3.2. Goodness of fit of the model

Given maximum posteriori attribution probability of the three
classes, we quantified the discriminatory ability of the model. The
probability of belonging to the allocated class was above 90%, with
probabilities of 96.25%, 92.58%, and 99.96% in classes 1 to 3, re-
spectively. The mean probability of belonging to another class was less
than 6.8%. A posteriori classification table providing mean values of
posteriori probabilities for individuals in each class supported a robust
fit of the model to the data (Table 3). Variation curves of the observed
and predicted values over time are presented in Fig. 3. These show that
the model fitted well to each class.

3.3. Covariate influences on conversion from MCI to AD

In the longitudinal sub-model, the impact of FAQ scores on cogni-
tion was statistically significant for the entire elderly population. In the
low-risk group, the regression coefficient for the FAQ was −0.90 (95%
confidence interval [CI]=−1.36, −0.44; P <0.001), suggesting that
cognition decreased significantly with increased FAQ over time.
Analogously, the coefficients for other factors such as education level
(−0.52; 95%CI=−1.01, −0.02; P=0.04) and ApoEε4 status
(−0.68; 95%CI=−0.98, −0.37; P <0.001), suggested that in-
dividuals with lower education levels and ApoEε4 carriers had a ten-
dency to greater cognition decline. In the medium-risk group, ApoEε4
carriers (β=−1.50; 95%CI=−2.06, −0.93; P <0.001) and those
with lower daily activity ability (β=−2.24; 95%CI=−2.74, −1.75;
P <0.001) had a greater degree of cognitive impairment. In the high-
risk group, lower daily activity ability (β=−6.16; 95%CI=−6.88,
−5.44; P <0.001) had greater cognitive decline. Furthermore, single
individuals had poorer cognition than did married individuals
(β=−2.61; 95%CI=−4.25, −0.98; P=0.002).

In the survival sub-model, different factors affected different groups.
In the low-risk group, compared with individuals without ApoEɛ4,
ApoEɛ4 carriers had 2.60 times the risk of conversion from MCI to AD
(95%CI= 1.31, 5.15; P=0.006). Lower daily activity ability may also
increase the risk of conversion from MCI to AD (hazard ratio
[HR]=3.15; 95%CI=1.03, 9.66; P=0.05). In the medium-risk

Table 1
Summary characteristics of 245 MCI individuals from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) during
2005–2014, where continuous variables are summarized as mean
(standard deviation (SD)), categorical variables are summarized as
counts and frequencies (%).

Characteristics Mean (SD) or n(%)

Age (year) 74.0 (5.5)
Gender

Male 145 (59.2%)
Female 100 (40.8%)

Marital status
Married 178 (72.7%)
Single 67 (27.3%)

Education
Medium education 45 (18.4%)
High education 200 (81.6%)

ApoEε4
Present 109 (44.5%)
Absent 136 (55.5%)

MMSE score 27.9 (1.73)
FAQ score 2.6 (3.5)

Abbreviations: FAQ, Functional Activities Questionnaire; MMSE,
Mini-Mental State Examination; SD, standard deviation.
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group, lower daily activity ability (HR=4.36; 95%CI=1.76, 10.80;
P=0.001) and being single (HR=6.59; 95%CI=1.92, 22.60;
P=0.002) increased the risk of conversion from MCI to AD. The risk of
conversion from MCI to AD in women was 2.66 times that of men
(95%CI=1.30, 5.45; P=0.007). The risk of conversion from MCI to

AD in ApoEɛ4 carriers was 2.22 times that of individuals without
ApoEɛ4 (95%CI= 1.25, 3.97; P=0.007). In the high-risk group, there
was higher risk of conversion from MCI to AD for individuals with a
lower education level than those with a higher education level
(HR=2.76; 95%CI=1.08, 7.02; P=0.03). Moreover, single in-
dividuals at high risk had an greater risk of conversion from MCI to AD
compared with married individuals (HR=16.57; 95%CI=2.08,
131.82; P=0.008). Table 4 presents parameter estimations of the
survival and longitudinal sub-models.

3.4. Individual dynamic prediction

To exemplify the individual dynamic cumulative incidence calcu-
lated from the JLCM, we predicted the incidence of conversion from
MCI to AD after 10 years for a married man of 75 years old who did not
carry ApoEɛ4, who entered the cohort at 66 years old, was highly
educated, and had high daily activity. Fig. 4 shows the incidence of
conversion from MCI to AD was essentially 0 at the age of 71, and then
gradually increased. The man had a probability of experiencing AD of
20% up to 85 years old.

4. Discussion

4.1. Characterization of covariate influences

Making full use of quantitative cognitive scores, the population with
MCI was divided into three groups: low-risk, medium-risk group, and
high-risk. For each of these, traditional covariates had differing effects
on the conversion from MCI to AD.

Our results indicate that gender plays an important role in the
conversion from MCI to AD. Among people over 65 years of age, the
probability of having AD was 2 to 3 times higher for women than for
men of the same age (Chandra et al., 2001). Hippocampal atrophy and
neurofibrillary tangles develop more quickly in women with such that

Table 2
Summary of 4 candidate models derived from the Joint Latent Class Mixed Model (JLCM): number of latent classes(G), Log-likelihood, number of parameters,
Bayesian Information Criterion (BIC) and latent class proportion (in%).

Candidate model G Maximized Log L(G) No. of parameters BIC Class1 (%) Class2 (%) Class3 (%) Class4 (%)

Model1 1 −4967.954 22 10,056.936 100.00
Model2 2 −4735.473 44 9713.001 8.16 91.84
Model3 3 −4684.528 66 9732.138 72.65 20.41 6.94
Model4 4 −4464.628 88 9813.367 6.94 75.51 11.02 6.53

Abbreviations: BIC, Bayesian Information Criterion.

Fig. 1. Predicted class-specific cognitive trajectories over time from the 3-class
joint latent class mixed model (JLCM), Among 245 mild cognitive impairment
(MCI) individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
during 2005–2014.

Fig. 2. Predicted class-specific risk rates for dementia over time from the 3-class
joint latent class mixed model (JLCM), Among 245 mild cognitive impairment
(MCI) individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
during 2005–2014.

Table 3
A posteriori classification table from the 3-class Joint Latent Class Mixed Model
(JLCM), providing the mean value of posteriori probabilities for individuals in
each class.

Prob1 Prob2 Prob3

Class1 0.9625 0.0307 0.0068
Class2 0.0675 0.9258 0.0067
Class3 0.0001 0.0003 0.9996

Fig. 3. Weighted observations and weighted mean of subject-specific predic-
tions from the 3-Classjoint latent class mixed model (JLCM), Among 245 mild
cognitive impairment (MCI) individuals from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) during 2005–2014.
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they show a more rapid loss of autonomy and cognitive decline com-
pared with men (Barnes et al., 2005). The organizational and activa-
tional role of estrogen in this has been confirmed by previous research
(McEwen and Milner, 2017; Pinares-Garcia et al., 2018). However,
there has been some degree of controversy. For instance, there is no
obvious gender difference in the risk of developing AD, as highlighted
increasing numbers of epidemiologists. This may be because of mis-
classification of AD, which occurs at different rates for men and women
or may be due to the fact that women live longer (Mielke et al., 2018).
Results of the current study indicate that in the medium-risk group, the
risk of conversion from MCI to AD was significantly higher among
women than among men. As such, the effect of gender on development
of AD needs further study.

According to a review of the literature, there is no consensus about
the mechanism by which educational level exerts effects on cognition
function. For example, cognitive reserve theory suggests that during the
process of education, individuals may increase reserves through the
addition of dendritic branches and other mechanisms to improve cog-
nitive function (Bickel and Kurz, 2009; Hugo and Ganguli, 2014; Meng
and D'Arcy, 2012; O'Shea et al., 2015). In contrast, brain reserve theory
proposes that the faster the rate of cognitive impairment, the higher the
risk of AD, with longer periods of education (Wattmo et al., 2011). Our
study is consistent with the cognitive reserve hypothesis as they in-
dicate that higher education levels are associated with lower risk of
conversion from MCI to AD, as well as less cognitive impairment.
Nonetheless, the relationship between educational level and the con-
version from MCI to AD requires further investigation.

Generally speaking, marriage appears to contribute to maintenance
of a favorable cognitive state. This may partly be due to the fact that
married individuals undertake more communicative activities, which
stimulates neurons and protects from cognitive degeneration (Lipnicki
et al., 2013; Yaakov, 2012). In particular, the mental health of married
elderly individuals is often better than that of widowed or single people
(Kuiper et al., 2015; Sommerlad et al., 2017; Wang et al., 2019). The
spouse plays an important role in quality of life for the elderly, as they
may not only provide care for their partner, but also spiritual comfort
(Sander and Ruth, 2016). Our study results agree with previous re-
search to show that singleness is associated with a greater risk of cog-
nitive decline. It is worth mentioning at this point that ADNI requires
participants to have a learning partner. Married elderly people tend to
have a readily available learning partner (their spouse) while single
people do not necessarily, as they are often single following the death of
their spouse. Therefore, selection bias and confounding cannot be ig-
nored in this sample. However, it appears that staying married (where
possible) is beneficial for elderly people, and they should seek support
from and interactions with spouses, friends, and family members to
reduce the risk of cognitive impairment.

APOEε4 is a well-established biogenetic risk factor for late-onset AD
(Aggarwal et al., 2005; Hendrie et al., 2014; Hsiung et al., 2004).
APOEε4 affects the primary seeding stage of amyloidal formation by
increasing amyloidal deposition and accumulation of hyperpho-
sphorylated tau at later stages, thus leading to neurotrophy (Liu et al.,
2017). Genetic studies conducted with ADNI data have confirmed that
APOEε4 is associated with hippocampal atrophy and cognitive dys-
function (particularly memory), thereby increasing disease risk and
lowering age of onset (MR et al., 2004). The presence of a single ε4
allele increases the risk of conversion from MCI to AD by 2–3 times,
while 2–4 alleles increased the risk by nearly 11 times (Hsiung et al.,

Table 4
Parameter estimates and 95% confidence intervals (CI) of the 3-class longitudinal sub-model and survival sub-model, among 245 Mild Cognitive Impairment (MCI)
individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) during 2005–2014.

Variable Class1 Class2 Class3
Coefficient 95% CI P Coefficient 95% CI P Coefficient 95% CI P

Longitudinal sub-model
Intercept 29.91 28.74,31.08 <0.001 31.56 29.00, 34.12 <0.001 27.57 24.60,30.54 <0.001
Gender 0.05 −0.34, 0.45 0.79 −0.82 −2.12, 0.48 0.22 1.58 0.32, 2.84 0.01

Educational level −0.52 −1.01, −0.02 0.04 0.03 −1.00, 1.07 0.95 −1.20 −2.57, 0.18 0.09
Marital status 0.02 −0.40, 0.45 0.92 −0.96 −2.70, 0.78 0.28 −2.61 −4.25, −0.98 0.002
ApoEɛ4 −0.68 −0.98, −0.37 <0.001 −1.50 −2.06, −0.93 <0.001 −0.19 −0.98, 0.61 0.65
FAQ −0.90 −1.36, −0.44 <0.001 −2.24 −2.74, −1.75 <0.001 −6.16 −6.88, −5.44 <0.001

Survival sub-model†

Intercept 1.03 0.98,1.07 0.23 1.18 0.96,1.46 0.13 1.39 0.78,2.47 0.26
Gender 0.90 0.31, 2.57 0.84 2.66 1.30, 5.45 0.007 1.92 0.75, 4.93 0.18

Educational level 0.76 0.26, 2.24 0.62 0.51 0.18, 1.46 0.21 2.76 1.08, 7.02 0.03
Marital status 0.89 0.36, 2.17 0.79 6.59 1.92, 22.60 0.002 16.57 2.08, 131.82 0.008
ApoEɛ4 2.60 1.31, 5.15 0.006 2.22 1.25, 3.97 0.007 1.48 0.77, 2.81 0.24
FAQ 3.15 1.03, 9.66 0.05 4.36 1.76, 10.80 0.001 2.57 0.80, 8.22 0.11

Abbreviations: CI, confidence interval; FAQ, Functional Activities Questionnaire.
† For the Survival sub-model, the coefficient is hazard ratio.

Fig. 4. Individual dynamic prediction of dementia at landmark ages 75 years
old. The male, middle school and above, married, did not carry ApoEɛ4,
Functional Activities Questionnaire (FAQ)=2.01,“●”denoted his cognition
from 66 years old to 71;“—”denoted the incidence of dementia;“—”denoted
confidence interval of the incidence of dementia.
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2004). In the current study, we observed that ApoEε4 carriers not only
had an increased risk of conversion from MCI to AD, but also had a
greater decline in cognitive function in the low-risk group and medium-
risk group. The genetic risk did not reach significance possibly due to
the omitted predictors, attenuated power, or unknown confounding
variables (Risacher et al., 2015; Qian et al., 2017). Undoubtedly, fur-
ther research and validation into the impact of the genetic risk may
advance our prediction of AD course. Taken together, active preventive
treatment should be conducted in the early stages for ApoEɛ4 carriers
with MCI to reduce the risk of conversion to AD and reduce impair-
ments in cognitive function.

Following earlier similar work, we observed that more informant-
reported functional deficits are associated with a 4-fold increase in
conversion from MCI to AD during long-term follow up (Tabert et al.,
2002). These empirical findings support the hypothesis that daily ac-
tivity abilities show subtle but significant deficits despite the fact that
MCI criteria excluding substantial functional deficits (Xue et al., 2012).
The FAQ is an essential instrument to identify any signs for alarm be-
cause minor disruption of daily function can indicate the latter phases
of disease progression in individuals with MCI (Brown et al., 2011). It is
possible that higher daily activity ability and rich social engagement
stimulates blood circulation in the striatal circuit of the prefrontal
cortex, such that maintaining a pleasant mood improves cognitive
function (Gill et al., 2011). The FAQ is particularly promising from the
perspective of public health due to its modifiable nature. Nonetheless, it
is rather remarkable that an established and universally accepted
quantitative metric threshold of functional decline to precisely separate
MCI from AD has not been determined. To remedy this, potential bio-
logical mechanisms underlying disruption of instrumental daily activ-
ities should urgently be identified.

4.2. Cognitive screening in primary health care

Various case identification strategies for dementia have been pro-
posed. Relying on baseline and cognitive data to predict the risk of
conversion from MCI to AD has limited accuracy, ranging from
65%−84% (Gomar et al., 2011; Michael et al., 2012; Walters et al.,
2016). In our previous studies, we used the growth mixed model
(GMM) to classify the risk of MCI based on ADNI data and the average
posterior probabilities of three groups obtained were 87.12%, 81.61%
and 92.79%, respectively (Zhi-Xin et al., 2018). Using the GMM model
for ADNI data in this paper, we also derived three different risk groups.
Membership probabilities and average posterior probability of three
estimated class were 81.86% vs 82.44% for low-risk group, 16.29% vs
84.99% for medium-risk group, and 1.86% vs 91.67% for high-risk
group, respectively. In contrast, we used the JLCM model to predict
conversion from MCI to AD with over 90% accuracy. Moreover, it is
worth noting that JLCM model can provide individual dynamic pre-
dictions while the GMM model is only capable of performing risk
classification. In summary, it could be thought that JLCM was superior
to GMM in screening high-risk groups. Because the overall prevalence
rate is low in primary healthcare, how best to identify patients with
cognitive impairment remains a controversial topic. Regular cognitive
screening for MCI in primary healthcare settings may contribute to
developing individualized care plans for patients and family caregivers
(Thyrian et al., 2012). Due to the limited availability of specialists (e.g.,
psychiatrists) and the under-documentation of cognitive impairment,
assessment and management of cognitive impairment will mainly fall
on primary care practitioners (Panayiotis et al., 2010). Increasing at-
tention should therefore be paid to the training of primary healthcare
physicians in cognitive screening (Flaherty et al., 2018).

Admittedly, the shortcomings of the MMSE, including its depen-
dence on population variables such as age and education, cannot be
ignored (Larner, 2018). MMSE is not specifically designed for primary
care. However, it does have obvious advantages, such as short training
requirements, ease of administration, and high accessibility (Cannon

and Larner, 2016; Tong et al., 2016). In fact, an effective assessment
tool that can be used without the presence of physicians may be even
more preferable (Rosenbloom et al., 2018). Further research is required
to develop an appropriate and effective cognitive assessment tool for
primary care.

4.3. Limitation

The current study is subject to several limitations that ought to be
acknowledged. First, the ADNI cohort was a convenience sample rather
than an epidemiological cohort, which likely resulted in recruitment of
more cognitively impaired subjects who were taking several medica-
tions for AD, MCI, or other conditions that may affect the results.
Second, variability in MCI is not fully considered, such as amnestic and
non-amnestic groups. Further effort is required to validate biomarkers
criteria, in order to make them suitable for application at primary care.

Despite these limitations, the method used in this study enabled a
medical service provider to identify high-risk individuals and provides a
powerful argument in favor of the joint model for handling hetero-
geneous longitudinal data. The key strength of this work is the statis-
tical method, which is likely to have clinical and economic utility.
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